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Abstract—Large Language Models (LLMs) are the center of 

many modern AI applications, such as chatbots and virtual 

assistants. However, their use often incurs high latency and 

computational costs due to redundant API calls for semantically 

similar queries. To address this inefficiency, we propose 

InpoCache, an indexed prompt caching system designed to 

reduce the lookup latency of LLM responses using lightweight 

indexing schemes, including binary search trees (BSTs) by query 

length, top-n k-means clustering based on embeddings, and K-D 

trees. Experimental results across multiple datasets demonstrate 

that the best-performing method of InpoCache, that is the K-D-

tree based indexing, consistently records the lowest average 

latency while maintaining high accuracy with no false positive 

results, that is, 93.83 ms with 97.33% accuracy on a dataset with 

1503 entries. Furthermore, compared to unindexed sequential 

search, all proposed indexing schemes significantly reduce 

lookup time while maintaining a high accuracy, no lower than 

90%. 

Keywords—binary search tree, indexing, k-d tree, k-means 

clustering,  prompt caching, sequential search 

I.  INTRODUCTION 

Large Language Models (LLMs) have become an important 
part of modern AI applications due to their ability to 
comprehend and generate human-like text. They are used in 
several systems such as chatbots, virtual assistants, and 
customer support systems to provide relevant responses given 
some user queries. Despite the advancements of LLMs, a 
significant challenge arises from the need to make individual 
API calls to the LLM for each user query. This process can be 
costly and time-consuming [1]. Beyond that, it can be 
redundant for cases where the LLM deals with large volumes 
of similar and repetitive semantically similar questions. Picture 
a programming assistant chatbot. A user might ask similar 
questions to the chatbot over time, e.g. “How to push to a 
different branch to git?” or “How to center a div inside another 
div?”. 

To address the inefficiency, various methods have been 
proposed to cache LLM responses, such as developing more 
reliable semantic embedding methods and improving the 
efficiency of decoding via speculative sampling [1, 2, 3]. The 
aforementioned work focuses more on embedding and token 
generation methods. On the other hand, InpoCache will 
complement those works by focusing more on reducing latency 

in the cache lookup process. This is done by designing an 
indexed prompt caching system based on the query and its 
embedding vector. 

We propose InpoCache, an indexed prompt caching system 
that stores historical LLM queries, its embedding vectors, and 
corresponding responses in several simple and lightweight 
indexing schemes rather than naively inserting it into the cache. 
This means that we can perform cache lookup in a more time-
efficient manner while still maintaining the accuracy of the 
resulting cached responses. This paper will explore three main 
indexing schemes, that are indexing by a binary search tree 
(BST) based on query length, indexed by top-n k-means 
clusters, and indexed by a K-D Tree based on the embedding 
vector of the query. This approach hopes to achieve better 
average lookup latency compared to sequential search on an 
unindexed cache or, in the worst case, achieve results no worse 
than that baseline.  

II. THEORETICAL FRAMEWORK 

A. Indexing 

Indexing in the context of Database Management System 
(DBMS) refers to the process of creating a copy of specific 
columns or fields from a database and organizing them into a 
separate structure, making the process of searching and 
retrieving data in databases quicker and more efficient. Several 
types of such structures include tree-like data structures and 
hash-like data structures. Indexing is used on tables with a high 
volume of data and frequent access patterns, making it a worth 
trade-off between lookup latency and overhead computation of 
inserting new entries into the database [4].  

B. Prompt Caching 

Prompt caching is an optimization technique used in Large 
Language Model (LLM) applications to temporarily store 
frequently used information between API calls and the model 
provider. Prompt caching reduces the cost and latency of 
LLMs, making it more efficient in handling repetitive content. 
This is achieved by evaluating similarity between user input 
queries and the information stored in the cache and reusing 
similar information to reduce the need of process identical 
queries multiple times [5]. A more detailed process on prompt 
caching mechanism can be presented as a flowchart in Fig. 1 
below.  
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Fig 1. LLM Prompt Caching Flowchart 

Other than reducing cost and latency, prompt caching also 
provides several other benefits, including scalability, resource 
and energy efficiency, security and privacy, and enhanced user 
experience. Several real-world LLM applications that often 
utilize prompt caching include conversational agents, coding 
assistants, and large document processing [5]. 

C. Sequential Search 

Sequential search is a basic brute force searching algorithm 
that works by comparing every element in a dataset (array, 
database entries, etc.) with the value to be searched. This 
searching algorithm provides a simple and direct way of 
searching for an element inside a given dataset, making it often 
used as a performance benchmark for more efficient searching 
algorithms. With its O(n) time complexity, it is also still an 
efficient searching algorithm for smaller datasets [6].  

D. Binary Search Tree 

 
Fig 2. Balanced Binary Search Tree 

Binary search tree (BST), also known as ordered binary 
tree, is a tree-based data structure in which each node has no 
more than two child nodes, where each child is either a leaf or 
the root of another binary search tree. The left subtree contains 
nodes with values less than the parent node while the right 
subtree contains nodes with values greater than the parent 
node. A more improved version of BST is the balanced binary 
search tree, where all the nodes are evenly distributed 
throughout the tree [7]. 

A balanced binary search tree has a unique property, that 
searching for an element inside the tree can be done in a 
binary-search-like fashion, making it an efficient searching 
method with O(log n) time complexity, far better than 
sequential search on a large dataset. This is done by only 
searching the promising child node while skipping the other, 
thus halving the number of elements to be searched on each 
iteration. Notice that this is essentially a decrease-and-conquer 
algorithm, where the problem is reduced to several smaller 
subproblems (decrease) and only some of them are processed 
to obtain the solution (conquer) [8]. 

E. K-Means Clustering 

 
Fig 3. K-Means Clustering Visualization with circles as data 

points, different colored circles representing different clusters, 

and blue diamonds representing the clusters’ centroid 

Source: https://medium.com/@jwbtmf 

 
 K-means clustering is an unsupervised learning algorithm 
used for data clustering, which groups unlabeled data into 
clusters. It is a centroid-based clustering algorithm that 
partitions a dataset into similar groups based on the distance 
between the centroids, that is, the center of the cluster that can 
be obtained using the mean or median of all the points inside a 
cluster or other metrics relevant to the characteristics of the 
data. For further explanation, k-means clustering works by 
selecting the number of clusters the dataset will be divided into 
(k), creating the initial centroids based on some sampling 
methods, and assigns each data point to its closest centroid 
based on a distance metric (e.g. euclidean distance or cosine 
similarity) and updating the centroids on each iteration [9]. 

F. K-D Tree 

K-dimensional tree, also known as K-D tree, is a space-
partitioning data structure for organizing data points in a k-
dimensional space. It functions similarly to a binary search tree 
with each node representing data in a multidimensional space. 
The data structure was developed by Jon Bentley in 1975 as a 
method to store spatial data with accomplishing three main 
criteria: nearest neighbor search, range queries, and fast lookup 
[10]. Insertion in K-D tree, using two-dimensional space (x, y) 
for simplification, works as follows: 

1. Traverse the K-D tree from the root node at depth 0. 

2. If we are on an even-depth node, compare the x-value 
of the current root node and the inserted value. If the x-
value of the inserted value is higher, continue the 
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lookup to the right subtree. Otherwise, continue the 
lookup to the left subtree. 

3. If we are on an odd-depth node, compare the y-value 
of the current root node and the inserted value. If the y-
value of the inserted value is higher, continue the 
lookup to the right subtree. Otherwise, continue the 
lookup to the left subtree. 

4. Repeat step 2 and 3 until there’s no more subtree to 
evaluate. The inserted value becomes a new leaf node 
inside the K-D tree 

 

 

Fig 4. K-D Tree Visualization 

Source: opendsa-server.cs.vt.edu/ODSA/Books/Everything/ 
html/KDtree.html 

Searching in K-D tree also works in a similar way to a 
binary search tree, that is by traversing the tree and comparing 
x-value on even-depth nodes or the y-value on odd-depth 
nodes. This provides a decrease-and-conquer approach of 
searching, much more efficient than sequential search, with 
time complexity ranging from O(log n) to O(n) depending on 
the resulting K-D tree [10]. 

G. Confusion Matrix 

A confusion matrix, also known as an error matrix, is a 
method for comparing the classification predicted by a system 
with the actual classification results. It is a metric to evaluate 
the performance of a classification model. In a confusion 
matrix, results are divided into four categories: true positive (a 
positive case that is correctly predicted), true negative (a 
negative case that is correctly predicted), false positive (a 
negative case that is incorrectly predicted as positive), and false 
negative (a positive case that is incorrectly predicted as 
negative) [11].  This provides a metric that shows how a 
classification model behaves when making predictions. It 
doesn’t just indicate the number of errors, but also the types of 
errors the model makes. 

III. INPOCACHE 

This section describes how InpoCache works, focusing 
mainly the indexing schemes and lookup algorithms that are 
being developed and are being explored. These schemes and 
algorithms include no indexing with sequential best-first 
search, query-length-based indexing with adjusted binary best-
first search on balanced BST, query-embedding k-means 
clusters indexing with top-n clusters sequential search, and K-
D-tree-based-indexing with K-D tree search. 

A. No Indexing with Sequential Best-First Search 

Caching with no indexing and sequential best-first search 
acts as a benchmark for other caching schemes. A better 
caching scheme should, in theory, perform faster cache lookup 
on average than this method. This method returns the first entry 
from the cache that is semantically similar to the given query 
that exceeds a cosine similarity threshold. Notice that this 
method will not always return the best query from the cache 
since there’s no guarantee that the first found entry is the best 
one in the entire cache. It can also be represented in the 
pseudocode shown in Algorithm 1. 

Algorithm 1. Sequential Best First Search 

Input : embedding_model, cache_data, query, threshold 

Output: best-first query from cache (if exists) 

 

1: query_embedding <- embedding_model.encode(query) 

2: For each entry in cache_data do 

3:   sim <- cosine_similarity(query_embedding,  

                              entry.embedding) 

4:   if sim >= threshold then 

5:     return entry.question 

6: return Null 

B. Query-Length-Based Indexing with Adjusted Binary Best-

First Search on Balanced BST 

 Caching with query-length-based indexing and adjusted 
binary best-first search on balanced BST works by storing the 
cache based on the length of the query and constructing a 
balanced BST of query lengths based on the cache dataset. 
Cache lookup is performed by traversing the BST in a binary 
search manner. If there is no cache hit by the end of the binary 
search, the algorithm backtracks to the parent node and 
continues the searching on the other subtree. This ensures that 
the search method achieves accuracy close to sequential search 
while maintaining a lower average latency. The search 
algorithm is also be represented in the pseudocode shown in 
Algorithm 2. 

Algorithm 2. Adjusted Binary Best-First Search on Balanced 
BST 

Input : embedding_model, sorted_cache_data, query, tree, 

threshold 

Output: best-first query from cache (if exists) 

 

 1: query_embedding <- embedding_model.encode(query) 

 2: query_length <- length(query) 

 3: stack <- [tree] 

 5: 

 6: while stack is not empty do 

 7:  node <- stack.pop() 

 8:  if node is Null then 

 9:    continue 

10: 

11:  left <- node.start_index 

12:  right <- node.start_index + node.count 

13:  if query_length = node.value then 

14:    visited_equal_node <- true 

15:    for each entry in sorted_cache_data[left:right]do 
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16:      sim <- cosine_similarity(query_embedding,    

                                  entry.embedding) 

17: 

18:     if sim >= threshold then 

19:       return entry 

20:      

21:  if query_length > node.value then 

22:    stack.push(node.left) 

23:    stack.push(node.right) 

24:  else 

25:    stack.push(node.right) 

26:    stack.push(node.left) 

27:      

28:  visited_equal_node <- (node.value = query_length) 

29:  if not visited_equal_node and query_length !=  

                                   node.value then 

30:    for each entry in sorted_cache_data[left:right]do 

31:      sim <- cosine_similarity(query_embedding,  

                                  entry.embedding) 

32:      if sim >= threshold then 

33:        return entry.question 

34:  

35: return Null 

 

C. Query-Embedding K-Means Clusters Indexing with Top-n 

Clusters Sequential Search 

 Caching with query-embedding k-means clusters indexing 
with top-n clusters sequential search works by storing the k-
means clusters and centroids for the cache dataset and doing 
the cache lookup using sequential search only within clusters 
whose centroids are semantically similar to the given query. 
Though it retains the O(n) time complexity, on a small to 
medium sized dataset, this method aims to perform better than 
non-indexed sequential search. The search algorithm is also 
represented in the pseudocode shown in Algorithm 3. 

Algorithm 3. Top-n Clusters Sequential Search 

Input  : embedding_model, cache_data, query, centroids, 

cluster_map, threshold, top_n_clusters 

Output : best-first query from top-N clusters (if 

exists) 

 

 1:  query_embedding <- embedding_model.encode(query) 

 2:   

 3:  centroid_sims <- empty list 

 4:  for each centroid in centroids do 

 5:      sim <- cosine_similarity(query_embedding,  

                                centroid) 

 6:      append sim to centroid_sims 

 7:   

 8:  ranked_clusters <- indices of centroids sorted by  

                        similarity descending 

 9:  top_clusters <- first top_n_clusters elements of  

                   ranked_clusters 

10:  

11:  for each cluster_id in top_clusters do 

12:    for each row_index in cluster_map[cluster_id] do 

13:      row <- cache_data[row_index] 

14:      sim <- cosine_similarity(query_embedding,  

                                 row.embedding) 

15:      if sim >= threshold then 

16:        return row.question 

17:  

18: return Null 

 

D.  K-D-Tree-Based-Indexing with K-D Tree Search 

 Caching with K-D-tree-based-indexing with K-D tree 
search works by generating a K-D tree of the cache dataset and 
performing the cache lookup based on said tree. This provides 
a time complexity ranging from O(log n) to O(n), depending on 
the resulting K-D tree. The searching algorithm is also 
represented as the pseudocode shown in Algorithm 4. 

Algorithm 4. K-D Tree Search 

Input  : embedding_model, cache_data, query, kdtree, 

threshold 

Output : nearest query from cache (if within distance 

threshold) 

 

 1:  query_embedding <- embedding_model.encode([query]) 

 2:  distances, indices <- kdtree.query(query_embedding) 

 3:   

 4:  best_distance <- distances[0][0] 

 5:  best_index <- indices[0][0] 

 6:   

 7:  if best_distance > threshold then 

 8:    return Null 

 9:   

10:  best_row <- cache_data[best_index] 

11:  return best_row.question 

 

IV. EXPERIMENTS 

This section describes the experiments conducted to test the 
performance of different indexing schemes and search 
algorithms in InpoCache. We first introduce the datasets used 
to simulate the cache and the preprocessing appliedto those 
datasets in Section A. Tthen, in Section B, we present the 
testing scheme, including the performance metrics that are 
being used and how the testing dataset was developed. 
Furthermore, the results of the experiments are shown and 
discussed in Chapter V. 

A. Cache Dataset Collection and Preparation 

 This experiment uses two main datasets, that are a chatbot 
question-answer dataset [12] and a scientific question-
answering dataset [13], commonly used for developing chatbot 
and information retrieval systems, respectively. The question-
and-answer pairs from these datasets are stored in a new CSV 
file, simulating the cache. To optimize the caching system, 
additional information is added to each entry of the cache, that 
is the length of the question, the embedding vector of the 
question, and the k-means cluster id of the question’s 
embedding vector. This paper utilizes embedding system from 
SBERT due to its reliability and open-source nature. 
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Futthermore, to evaluate InpoCache’s performance on datasets 
of different sizes, the final simulated cache includes the chatbot 
dataset (503 entries), scientific question-answering dataset 
(1000 entries) and combined dataset (1503 entries). The 
resulting dataset can be accessed via the Github repository 
listed in Appendix A. 

B. Testing  Scheme 

There are two main evaluation metrics used to assess the 

performance of InpoCache. The first metric is latency or 

average lookup time. An acceptable indexing scheme should 

perform no worse on average than an unindexed sequential 

search. The second metric is accuracy, which refers to whether 

the caching system returns the correct cache hit or miss given 

a query. Specifically, accuracy is represented using a 

confusion matrix which informs the percentage of true 

positives, true negatives, false positives, and false negatives. 

In this context, a false positive means an incorrect result due 

to returning an unrelated cache entry, while a false negative 

means a relevant entry was not returned. This distinction is 

important because, in prompt caching systems, we may 

tolerate a missed hit (false negative) more than an incorrect hit 

(false positive). Therefore, a higher accuracy rate and lower 

false positive and false negative rates define the quality of 

InpoCache’s caching system. 
 To ensure the caching system performs well on a broad 
range of query types, the testing dataset is divided into three 
main categories: exact matc, semantically matc, and random 
datasets. The exact match dataset is taken from samples of the 
cache dataset, using entries from evenly spaced indices to 
generate a fair benchmark for the unindexed sequential search 

method. The semantic match dataset contains queries with 
semantically similar meaning to those in the exact dataset. 
Finally, the random dataset consists of random unrelated 
queries to evaluate whether the cache incorrectly returns a 
result. Both the semantic and random match datasets are 
generated synthetically. The resulting datasets can be accessed 
via the Github repository listed in Appendix A. 

 The testing is conducted by measuring the time taken and 
the accuracy of each cache dataset with its corresponding exact 
match, semantic match, and random test datasets. For each 
query from the test dataset, the searching is performed five 
times to account for performance variability across iterations, 
resulting in an average latency that accurately reflects it actual 
performance. The testing uses a 0.9 cosine similarity threshold 
and 0.5 euclidean distance threshold for the K-D Tree.  

 The implementation is done in Python and Jupyter 
Notebook due to their extensive support for data processing 
libraries. The source code for the indexing and algorithm 
implementation, as well as the testing scheme and results, can 
be accessed via the Github repository listed in Appendix A. 

V. RESULTS AND ANALYSIS 

A. Results 

Based on the datasets and testing scheme in Chapter IV, 

the results of the experiments are shown on Table 1. TP, TN, 

FP, and FN are notations for true positive, true negative, false 

positive, and false negative respectively. Furthermore, method 

A, B, C, and D represents indexing schemes and search 

algorithms in the same order as presented in Chapter III.

 

Table 1. Experiment Results 

Dataset Method 
Latency (ms) Accuracy (%) 

Average Min Max Std. TP+TN TP TN FP FN 

Chatbot 

A 163.28 63.78 274.05 56.48 98.18 36.36 61.82 1.82 0 

B 157.85 52.22 273.70 76.52 100.00 28.18 61.82 0 0 

C 118.19 59.13 172.49 22.69 96.36 34.55 61.82 1.82 1.82 

D 107.78 52.25 173.42 34.61 100.00 38.18 61.82 0 0 

Scientific 
Question 

Answering 

A 233.76 87.58 320.35 55.10 93.33 50.67 42.67 0 6.67 

B 196.38 60.10 342.83 108.25 93.33 50.67 42.67 0 6.67 

C 124.00 66.43 108.25 26.47 92.00 49.33 42.67 0 8.00 

D 103.88 49.96 26.47 26.45 96.00 53.33 42.67 0 4.00 

Combined 

A 299.21 99.19 398.92 69.57 91.33 38.67 52.67 1.33 7.33 

B 271.98 89.39 422.50 114.05 92.67 40.00 52.67 0 7.33 

C 132.92 78.82 196.36 26.27 90.00 37.33 52.67 1.33 8.67 

D 93.83 41.51 166.46 33.79 97.33 44.67 52.67 0 2.67 
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B. Latency Analysis 

Based on the results shown in Table 1, across all datasets, 

method D, which is K-D-tree-based-indexing with K-D tree 

search, consistently achieves the lowest average latency. For 

instance, in the Chatbot dataset, it records an average latency 

of 107.78 ms, outperforming all other methods. This trend 

holds in both the Scientific Question Answering dataset and 

the Combined dataset, showcasing the scalability of this 

method. Furthermore, method D produces more consistent 

results across datasets of different sizes, unlike other methods 

which show an increased average latency on larger datasets.  

As a side note, method C, which is query-embedding k-

means clusters indexing with top-n clusters sequential search, 

demonstrates the lowest standard deviation of latency across 

datasets, indicating more stable and consistent performance, 

albeit with a slightly higer average latency than method D. 

It is also important to note that every proposed indexing 

scheme and search algorithm for InpoCache, namely method B 

through D, performs better than the benchmark (method A) in 

terms of latency across all datasets, making them all acceptable  

and effective caching systems. 

C. Accuracy Analysis 

Based on confusion matrix accuracy shown in Table 1, 

across all datasets, method D, which is K-D-tree-based-

indexing with K-D tree search, achieves the highest or near-

highest accuracy scores. it reaches 100% accuracy alongside 

method B on the Chatbot dataset, 96% accuracy on the 

Scientific Question Answering Dataset with no false positives, 

and 97.33% accuracy on the Combined dataset, also with no 

false positives.  

It is also important to notice that all proposed indexing 

scheme and search maintain highly acceptable accuracy across 

all datasets, with the lowest accuracy recorded at 90%. 

Furthermore, each method tends to return false negatives rather 

than false positives, which aligns with the intended behavior of 

the caching system. Additionally, the few false positives 

returned during the cache lookup are still considered 

acceptable, as the retrieved query remain semantically similar 

to the intended one, as illustrated in Appendix B. 

 

VI. CONCLUSION 

In this paper, we introduce InpoCache, an efficient prompt 

caching system for Large Language Models that leverages 

lightweight indexing techniques to improve cache lookup 

performance. Unlike prior work that focuses on embedding 

generation and token decoding efficiency, InpoCache 

addresses the bottleneck of cache retrieval latency. 

Through experiments on several datasets. We found that all 

three proposed indexing methods, which are query-length-

based binary search, embedding-based top-n k-means 

clustering, and K-D-tree-based indexing, outperforms the 

sequential search baseline in terms of latency. Among said 

methods, the K-D-tree-based indexing consistently 

demonstrated the lowest average latency across datasets while 

achieving high accuracy and zero false positives in most cases. 

Moreover, the observed false negatives were more common 

than false positives, which is a favorable property for caching 

systems that prioritize precision. Even in cases of false 

positives, the retrieved responses remained semantically 

relevant. 

In summary, InpoCache provides a practical and effective 

solution for accelerating LLM-based applications. Future work 

may focus ondeveloping a ready-to-deploy pipeline for 

InpoCache, exploring more sophisticated indexing methods 

such as vector databases, or designing an entirely new indexing 

schemes or embedding techniques. 

VII. APPENDIX 

A. Appendix A 

The cache datasets, testing datasets, and the full source 

code of the experiment can be found on this Github repository:  

 

https://github.com/Nuetaari/InpoCache 

B. Appendix B 

The following figure shows the false positive results 

retrieved by InpoCache (represented by actual result).  

  

Query: How does the local beam search operate? 

Intended Result: How does the local beam search operate? 

Actual Result: What is a local beam search? 

 

Query: What is the distinction of the search tree 

from the state space? 

Intended Result: What is the distinction of the search tree 

from the state space? 

Actual Result: What is the distinction of the state space 

from the search tree? 

 

Query: How is a search tree different from the 

state space? 

Intended Result: What is the distinction of the search tree 

from the state space? 

Actual Result: What is the distinction of the state space 

from the search tree? 
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